
KATHOLIEKE

UNIVERSITEIT

LEUVEN

1 Secappdev 2013

Access control

Frank Piessens
(Frank.Piessens@cs.kuleuven.be)

mailto:Frank.Piessens@cs.kuleuven.be

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 2

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 3

Access Control: introduction

• Security = prevention and detection of

unauthorized actions on information

• Two important cases:

– An attacker has access to the raw bits representing

the information

=> need for cryptographic techniques

– There is a software layer between the attacker and

the information

=> access control techniques

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 4

General access control model

Principal Action

G
u
ard

Protected

system

Authentication Authorization

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 5

Examples

Principal Action Guard Protected

system

Host Packet send Firewall intranet

User Open file OS kernel File system

Java

Program

Open file Java Security

Manager

File

User Query DBMS Database

User Get page Web server Web site

… … … …

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 6

Entity Authentication

• Definition
– Verifying the claimed identity of an entity (usually called

principal) that the guard is interacting with

• Different cases need different solutions:
– Principal is a (human) user

– Principal is a (remote) computer

– Principal is a program (e.g. An app on a Smartphone)

– Principal is a user working at a remote computer

– Principal is a user running a specific piece of code

– …

• See separate session on entity authentication

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 7

Authorization by the Guard

• Guard can have local state

– “protection state”

• Upon receipt of an action

– Decides what to do with the action

• We only consider pass/drop

• Alternatives are: modify/replace, first insert other action,…

– If necessary: updates the local state

• Modeled by means of a “security automaton”

– Set of states described by a number of typed state variables

– Transition relation described by predicates on the action and

the local state

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 8

Guard

• Notation:
– Actions are written as procedure invocations

– Behavior of the guard is specified by:
• Declaration of state variables

– Determine the state space

• Implementations of the action procedures

– Preconditions determine acceptability of action

– Implementation body determines state update

• Example: no network send after file read

bool hasRead = false;

void send() requires !hasRead {

 }

void read() {

 hasRead = true;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 9

Policies and models

• Access control policy = rules that say what is
allowed and what not

– This includes: who is allowed to change the rules?

– Semantics of a policy is a security automaton in a
particular state

• Access control model = “A class of policies with
similar characteristics”

– Hard to define precisely

– An access control model makes particular choices
about what is in the protection state and how actions
are treated

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 10

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 11

Discretionary Access Control (DAC)

• Objective = creator-controlled sharing of information

• Key Concepts
– Principals are users

– Protected system manages objects, passive entities requiring
controlled access

– Objects are accessed by means of operations on them

– Every object has an owner

– Owner can grant right to use operations to other users

• Variants:
– Possible to pass on ownership or not?

– Possible to delegate right to grant access or not?

– Constraints on revocation of rights.

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 12

Security automaton for DAC
type Right = <User, Obj, {read, write}>;

Set<User> users = new Set();

Set<Obj> objects = new Set();

Set<Right> rights = new Set(); // represents the Access Control Matrix

Map<Obj,User> ownerOf = new Map();

// Access checks

void read(User u, Obj o) requires <u,o, read> in rights; {}

void write(User u, Obj o) requires <u,o,write> in rights; {}

// Actions that impact the protection state

void addRight(User u, Right <u’,o,r>)

 requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {

 rights[<u’,o,r>] = true;

}

void deleteRight(User u, Right <u’,o,r>)

 requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {

 rights[<u’,o,r>] = false;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 13

Security automaton for DAC (ctd)

void addObject(User u, Obj o)

 requires (u in users) && (o notin objects); {

 objects[o] = true;

 ownerOf[o] = u;

}

void delObject(User u, Obj o)

 requires (o in objects) && (ownerOf[o] == u); {

 objects[o] = false;

 ownerOf[o] = none;

 rights = rights \ { <u’,o’,r’> in rights where o’==o};

}

// Administrative functions

void addUser(User u, User u’) requires u’ notin users; {

 users[u’] = true;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 14

DAC

• Disadvantages:

– Cumbersome administration

• E.g user leaving the company or user being promoted to

another function in the company

– Not so secure:

• Social engineering

• Trojan horse problem

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 15

DAC Extensions

• Structuring users:

– Groups

– Negative permissions

– But: insufficient to make administration much easier

• Structuring operations:

– “access modes”: observe / alter / …

– Procedures: business procedure involving many operations

on many objects

• Structuring objects:

– E.g. Inheritance of folder permissions

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 16

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 17

Role-Based Access Control (RBAC)

• Main objective: manageable access control

• Key concepts of the model:

– Role:
• many-to-many relation between users and permissions

• Corresponds to a well-defined job or responsibility

• Think of it as a named set of permissions that can be
assigned to users

– When a user starts a session, he can activate some
or all of his roles

– A session has all the permissions associated with
the activated roles

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 18

Security automaton for RBAC
// stable part of the protection state

Set<User> users;

Set<Role> roles;

Set<Permission> perms;

Map<User, Set<Role>> ua; // set of roles assigned to each user

Map<Role, Set<Permission>> pa; // permissions assigned to each role

// dynamic part of the protection state

Set<Session> sessions;

Map<Session,Set<Role>> session_roles;

Map<User,Set<Session>> user_sessions;

// access check

void checkAccess(Session s, Permission p)

 requires s in sessions && Exists{ r in session_roles[s]; p in pa[r]}; {

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 19

Security automaton for RBAC (ctd)

void createSession(User u, Set<Role> rs)

 requires (u in users) && rs < ua[u]; {

 Session s = new Session();

 sessions[s] = true;

 session_roles[s] = rs;

 user_sessions[u][s] = true;

}

void dropRole(User u, Session s, Role r)

 requires (u in users) && (s in user_sessions[u])

 && (r in session_roles[s]); {

 session_roles[s][r] = false;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 20

RBAC - Extensions

• Hierarchical roles: senior role inherits all

permissions from junior role

Engineering Dept.

Project A Eng Project B Eng

Director of Eng Dept

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 21

RBAC - Extensions

• Constraints:

– Static constraints

• Constraints on the assignment of users to roles

• E.g. Static separation of duty: nobody can both:

– Order goods

– Approve payment

– Dynamic constraints

• Constraints on the simultaneous activation of roles

• E.g. to enforce least privilege

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 22

RBAC in practice

• Implemented in databases or into specific

applications

• Can be “simulated” in operating systems using

the group concept

• Implemented in a generic way in application

servers

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 23

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 24

Windows Access Control

• Principals are users or machines

– Identified by Security Identifiers (SID)’s

• E.g. S-1-5-21-XXX-XXX-XXX-1001

• Hierarchical and globally unique

• Authorities manage principals and their credentials

– Local Security Authority on each PC

– Domain controller is authority for a domain

• Authentication makes sure that every process / thread

runs with an access token containing authorization

attributes

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 25

Windows Access Control

• Securable objects include:

– files, devices, registry keys, shared memory

sections, …

• Every securable object carries a security

descriptor, including a.o. an ACL.

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 26

Windows Access tokens

• Contain:

– SID for the user

– SID’s for the groups a user belongs to
• Defined by the authority (typically domain)

• Should reflect organizational structure

– SID’s for the local groups (aliases) a user belongs to
• Defined locally

• Should reflect logical roles of applications on this machine

– Privileges of the user, e.g.
• Shutdown machine

• Take ownership privilege (e.g. for Administrators)

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 27

Windows security descriptors

• Contain:

– Owner SID

– (Primary group SID)

– DACL (Discretionary ACL): the ACL used for access

control

– SACL (System ACL): ACL specifying what should be

audited

• Created at object creation time from a default

template attached to the creating process

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 28

Windows DACL’s

• A DACL contains a sorted list of access control

entries

• Each access control entry denies or grants

specific access rights to a group or user

• Access control entries that deny access should

be placed in front of the list

Deny

User x

Read/Write

Allow

Group g

Read/Write

Allow

Group Everyone

Read

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 29

Windows access control

• The kernel performs access checks for each

securable object by:

– Iterating over the access control entry in the DACL of

the object

– Each access control entry is matched to the access

token of the accessing thread

– The first match decides (hence deny entries should

be before allow entries!)

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 30

Example

(Example from MSDN Library documentation)

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 31

Caching mechanisms

• Extensive caching is used to boost performance

– Access token caches authorization attributes

– Once a file is opened, the file handle is used as a

capability, and no further access checks occur

• Such a handle can be passed to other users

• Hence policy changes are not effective

immediate if the affected user is currently logged

on

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 32

Implementing Access Control in

Applications

• Several options

1. Delegate to OS

2. Rely on application server

3. Enterprise security middleware

4. Roll your own

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 33

Approach #1: delegate to the OS

• If application resources can be mapped to OS

resources, the OS access control can be reused

• E.g. in Windows:

– Server authenticates client, and puts access token

on the thread servicing the request

Resources

Operating System

Application

User command

Access check

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 34

Approach #2: application servers

• Application server intercepts commands and

performs access check

• E.g. in Windows COM+:
• Look for a local group SID corresponding to a role in the

client access token

Resources

Operating System

Application User command

Access check

Application server

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 35

Approach #3: security middleware

• Reverse proxy intercepts commands and

performs access check

• E.g. IBM WebSEAL

PEP

PDP

Application 1

User command
Application 2

.

.

.

Policy

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 36

Approach #4: in the application

• Application performs explicit checks in the

application code

• It makes sense to externalize at least the policy

to an authorization engine

Resources

Operating System

Application
User command

Access checks

crosscut application
Authorization

Engine (PDP)

Policy

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 37

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Introduction

• If the software that a user is running can not be

trusted, access control is more complicated

– E.g. Trojan horses

– E.g. Smartphone apps, Web gadgets, …

• Additional issues include:

– How can you give SW access to information, but

limit what the SW can do with that information

• Usage control / information flow control

– The confused deputy problem

Secappdev 2013 38

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 39

Mandatory Access Control (MAC)

• Objective = strict control of information flow

• Concrete example MAC model: Lattice Based
Access Control (LBAC)

• Objective =

– A lattice of security labels is given

– Objects and users are tagged with security labels

– Enforce that:
• Users can only see information below their clearance

• Information can only flow upward, even in the presence of
Trojan Horses

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 40

Example lattices

Top secret

Secret

Confidential

Unclassified Unclassified

Confidential

Project A

Confidential

Project B

Confidential

Project A & B

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 41

Typical construction of lattice

• Security label = (level, compartment)

• Compartment = set of categories

• Category = keyword relating to a project or area

of interest

• Levels are ordered linearly

– E.g. Top Secret – Secret – Confidential –

Unclassified

• Compartments are ordered by subset inclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 42

Example lattice

(C,{})

(C,{A}) (C,{B})

(C,{A,B})

(S,{})

(S,{A}) (S,{B})

(S,{A,B})

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 43

LBAC

• Key concepts of the model:

– Users initiate subjects or sessions, and these are
labeled on creation

– Users of clearance L can start subjects with any
label L’ L

– Enforced rules:
• Simple security property: subjects with label L can only

read objects with label L’ L (no read up)

• *-property: subjects with label L can only write objects
with label L’ L (no write down)

– The *-property addresses the Trojan Horse problem

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 44

LBAC and the Trojan Horse problem

File F

File F’

S1

S2

Secret level

Confidential level

read

no write

write

no read

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 45

Security automaton for LBAC
// Stable part of the protection state

Set<User> users;

Map<User,Label> ulabel; // label of users

//Dynamic part of the protection state

Set<Obj> objects = new Set();

Set<Session> sessions = new Set();

Map<Session, Label> slabel = new Map(); // label of sessions

Map<Obj,Label> olabel = new Map(); // label of objects

// No read up

void read(Session s, Obj o)

 requires s in sessions && o in objects && slabel[s] >= olabel[o]; {}

// No write down

void write(Session s, Obj o)

 requires s in sessions && o in objects && slabel[s] <= olabel[o]; {}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 46

Security automaton for LBAC (ctd)

// Managing sessions and objects

void createSession(User u, Label l)

 requires (u in users) && ulabel[u] >= l ; {

 s = new Session();

 sessions[s] = true;

 slabel[s] = l;

}

void addObject(Session s, Obj o, Label l)

 requires (s in sessions) && (o notin objects) && slabel[s] <= l; {

 objects[o] = true;

 olabel[o] = l;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 47

LBAC

• Problems and disadvantages

– Too rigid => need for “trusted subjects”

– Not well suited for commercial environments

– Covert channel problems

• But LBAC is used in practice for addressing

integrity concerns rather than confidentiality

concerns

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 48

Windows Integrity Protection

• Windows Vista and later add a lattice-based access

control model

– But used for integrity control (this dual interpretation of

LBAC is called the Biba model)

• Securable objects get an integrity level

– representing how important their integrity is

• Access Tokens get an integrity level

– Representing how “contaminated” they are

• Three levels are distinguished:

– High (admin), medium (user), low (untrusted)

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 49

Overview

• Introduction: Lampson’s model for access control

• Classical User Access Control Models

– Discretionary Access Control (DAC)

– Role-Based Access Control (RBAC)

– Implementation techniques

• Access Control for Untrusted Software

– Mandatory Access Control (MAC)

– Usage Control and Information Flow Control

– Implementation techniques

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Introduction

• Given the problems with LBAC but the

importance of containing untrusted software,

researchers are studying alternative techniques:

– Usage control: how can one give access to

resources but limit how they are used

– Information flow control: how can one give access to

information but limit how it can be disseminated

• LBAC is a very rough approximate solution for this

Secappdev 2013 50

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: Information flow control

• Information flow control is a class of technical

countermeasures that try to enforce that software can

not leak information – not even indirectly!

Untrusted SW

E.g. web gadget

All kinds of

input

All kinds of

output

KATHOLIEKE

UNIVERSITEIT

LEUVEN

• Information flow control is a class of technical

countermeasures that try to enforce that software can

not leak information – not even indirectly!

Untrusted SW

E.g. web gadget

All kinds of

input

All kinds of

output

P
O

LIC
Y

P
O

LIC
Y

Private

Public

Private

Public

Example: Information flow control

KATHOLIEKE

UNIVERSITEIT

LEUVEN

• Information flow control is a class of technical

countermeasures that try to enforce that software can

not leak information – not even indirectly!

Untrusted SW

E.g. web gadget

All kinds of

input

All kinds of

output

P
O

LIC
Y

P
O

LIC
Y

Private

Public

Private

Public

Example: Information flow control

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Information flow control

• IFC can not be enforced precisely by runtime

monitoring alone

Secappdev 2013 54

Untrusted SW

E.g. web gadget

All kinds of

input

All kinds of

output

P
O

LIC
Y

P
O

LIC
Y

Private

Public

Private

Public

1

7

7

3

Secure:

Out_low := In_low + 6

Insecure:

Out_low := In_high

Insecure:

if (In_high > 10) {

 Out_low := 3;

}

else Out_low := 7

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript
• Modern web applications use client-side scripts for

many purposes:

– Form validation

– Improving interactivity / user experience

– Advertisement loading

– ...

• Malicious scripts can enter a web-page in various ways:

– Cross-site-scripting (XSS)

– Malicious ads

– Man-in-the-middle

– ...

Secappdev 2013 55

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript

Secappdev 2013 56

var text = document.getElementById('email-input').text;

var abc = 0;

if (text.indexOf('abc') != -1)

 { abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript

Secappdev 2013 57

var text = document.getElementById('email-input').text;

var abc = 0;

if (text.indexOf('abc') != -1)

 { abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

Explicit

flow Implicit

flow

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Enforcement mechanisms

• Static, compile-time techniques

– Classify (=type) variables as either high or low

– Forbid:

• Assignments from high expressions to low variables

• Assignments to low variables in “high contexts”

• ...

• Two mature languages (research prototypes):

– Jif: a Java variant

– FlowCaml: an ML variant

• Experience: quite restrictive, labour intensive

– Probably only useful in high-security settings

Secappdev 2013 58

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Enforcement mechanisms

• Runtime techniques

– Approximate non-interference with a safety property

– Label all data entering the program with an appropriate

security level

– Propagate these levels throughout the computation

– Block output of high-labeled data to a low output channel

• Several mature and practical systems, but all with

(some) remaining holes

• Some sound systems, but quite expensive

Secappdev 2013 59

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2013 60

Conclusion

• Most access control mechanisms implement the

Lampson model

– Principal – Action –Guard – Protected system

• Three important categories of access control policy

models each have their own area of applicability

– DAC in operating systems

– RBAC in applications and databases

– LBAC starting to find its use for integrity protection

• Researchers are looking into ways to enforce more fine-

grained policies in the presence of untrusted software

